MPICH-V PROJECT:
A MULTIPROTOCOL AUTOMATIC
FAULT-TOLERANT MPI

A. Bouteiller

T. Herault

G. Krawezik

P. Lemarinier
F. Cappello

INRIA/LRI, UNIVERSITE PARIS-SUD, ORSAY, FRANCE
(BOUTEILL@LRIFR)

Abstract

High performance computing platforms such as Clusters,
Grid and Desktop Grids are becoming larger and subject
to more frequent failures. MPI is one of the most used
message passing libraries in HPC applications. These
two trends raise the need for fault-tolerant MPI. The
MPICH-V project focuses on designing, implementing and
comparing several automatic fault-tolerant protocols for
MPI applications. We present an extensive related work
section highlighting the originality of our approach and the
proposed protocols. We then present four fault-tolerant
protocols implemented in a new generic framework for
fault-tolerant protocol comparison, covering a large spec-
trum of known approaches from coordinated checkpoint,
to uncoordinated checkpoint associated with causal mes-
sage logging. We measure the performance of these pro-
tocols on a micro-benchmark and compare them with the
NAS benchmark, using an original fault tolerance test.
Finally, we outline the lessons learned from this in depth
fault-tolerant protocol comparison of MPI applications.

Key words: fault-tolerant MPI, performance evaluation,
coordinated checkpoint, message logging

The International Journal of High Performance Computing Applications,
Volume 20, No. 3, Fall 2006, pp. 319-333

DOI: 10.1177/1094342006067469

© 2006 SAGE Publications

Figures 2—9 appear in color online: http://hpc.sagepub.com

1 Introduction

A current trend in high performance computing is the use
of large scale computing infrastructures such as clusters
and Grid deployments harnessing thousands of proces-
sors. Machines of the Top 500, current large Grid deploy-
ments (TERA Grid, NAREGI Grid, DEISA, etc.) and
campus/company wide Desktop Grids are examples of
such infrastructures. In the near future, these infrastructures
will even become larger. The quest for petaflops scale
machines leads us to consider clusters with 100000 nodes.
Grids are expected to expand in terms of number of sites,
applications and users. Desktop Grids are also expected to
harness more participants thanks to an increasing software
maturity and social acceptance. In all these infrastructures,
node and network failures are likely to occur, leading to
the necessity of a programming model providing fault
management capabilities and/or runtime featuring fault-
tolerant mechanisms.

Another current trend is the use of MPI as the message
passing environment for high performance parallel applica-
tions. Because of its high availability on parallel machines
from low cost clusters to clusters of vector multiprocessors,
it allows the same code to run on different kind of archi-
tectures. It also allows the same code to run on different
generations of machines, ensuring a long lifetime for the
code. MPI also conforms to popular high performance,
message passing, programming styles. Even if many
applications follow the SPMD programming paradigm,
MPI is also used for Master-Worker execution, where MPI
nodes play different roles. These three parameters make
MPI the first choice programming environment for high
performance applications. MPI in its specification (Snir et al.
1996) and most deployed implementations, MPICH (Gropp
etal. 1996) and LAMMPI (Burns, Daoud, and Vaigl 1994),
follows the fail stop semantic (specification and imple-
mentations do not provide mechanisms for fault detection
and recovery). Thus, MPI applications running on a large
cluster may be stopped at any time during their execution
as a result of an unpredictable failure.

The need for fault-tolerant MPI implementations has
recently reactivated research in this domain. Several
research projects are investigating fault tolerance at differ-
ent levels: network (Sankaran et al. 2003), system (Bouteiller
et al. 2003a), and applications (Fagg and Dongarra 2000).
Different strategies have been proposed to implement
fault tolerance in MPI: a) user/programmer detection and
management, b) pseudo automatic, guided by the pro-
grammer and c) fully automatic/transparent. For the last
category, several protocols have been discussed in the lit-
erature. As a consequence, for the user and system admin-
istrator, there is a choice not only among a variety of fault
tolerance approaches but also among various fault-toler-
ant protocols.

Despite the long history of research on fault tolerance
in distributed systems, there are very few experimental
comparisons between protocols for the fully automatic and
transparent approaches. There are two main approaches
for automatic fault tolerance: coordinated checkpoint and
uncoordinated checkpoint associated with message logging.
Coordinated checkpoint implies synchronized check-
points and restarts that may preclude its use on large scale
infrastructures. However, this technique adds low overhead
during failure-free execution, ensuring high performance
for communication intensive applications. Uncoordinated
checkpoint associated with message logging features has
the opposite properties. It is efficient on reexecution of
crashed processes because only these are reexecuted, but
it adds a high communication overhead even on fault-free
executions. Each of the two approaches can be imple-
mented using different protocols and optimizations. In the
context of MPI, very little is known about the merits of the
different approaches in terms of performance on applica-
tions and capabilities to tolerate high fault frequency, a
parameter which is correlated to the scale of the infra-
structures.

To investigate this issue, we started the MPICH-V
project in September 2001 with the objective of studying,
proposing, implementing, evaluating and comparing a large
variety of MPI fault-tolerant protocols for different kinds of
platforms: large Clusters, Grids and desktop Grids. After
three years of research, we have developed a generic frame-
work and a set of four fault-tolerant protocols (two pessi-
mistic message logging protocols: MPICH-V1 (Bosilca et al.
2002) and MPICH-V2 (Bouteiller et al. 2003a); a global
checkpoint strategy based on Chandy-Lamport algorithm,
MPICH-V/CL (Bouteiller et al. 2003c); and a causal
message logging protocol, MPICH-V/causal). This paper
presents the different protocols, their implementation within
the framework, and sums up our learning in this still ongo-
ing research on automatic and transparent fault tolerance
for MPL.

The paper is organized as follows. Section 2 presents
related work highlighting the originality of this work.
Section 3 presents the different protocols we have imple-
mented and compares their advantages and drawbacks.
Section 4 presents performance, fault tolerance evalua-
tion and comparison of all these protocols using NAS
benchmarks. Section 5 sums up what we learned from the
experience of these protocols.

2 Related Works

Automatic and transparent fault-tolerant techniques for
message passing distributed systems have been studied for
a long time. We can distinguish few classes of such pro-
tocols: replication protocols, rollback recovery protocols
and self-stabilizing protocols. In replication techniques,

every process is replicated f times, f being an upper bound
on the number of simultaneous failures. As a consequence,
the system can tolerate up to f concurrent faults but divides
the total computation resources by a factor of f. Self-sta-
bilizing techniques are used for non-terminating compu-
tations, such as distributed system maintenance. Rollback
recovery protocols consist of taking checkpoint images
of processes during initial execution and rollback some
processes to their last images when a failure occurs. These
protocols take special care to respect the consistency of
the execution in different manners. Rollback recovery is the
most studied technique in the field of fault-tolerant MPL
Several projects are working on implementing a fault-tol-
erant MPI using different strategies. An overview can be
found in Gropp and Lusk (2002). Figure 1 summarizes fault
tolerant MPI implementations classification with respect
to fault tolerant technique and level in the software stack.

Rollback recovery protocols include global checkpoint
techniques and message logging protocols. Extended
descriptions of these techniques can be found in Elno-
zahy et al. (2002).

2.1 Global Checkpoint

Three families of global checkpoint protocols have been
proposed in the literature (Elnozahy et al. 2002). The first
family gathers uncoordinated checkpoint protocols: every
process checkpoints its own state without coordination
with other processes. When a fault occurs, the crashed proc-
esses restart from previous checkpoints. Processes that
have received a message from a rolled back process also
have to rollback if this message was initially received
before the checkpoint image of this process. This may lead
to a domino effect where a single fault makes the whole
system rollback to the initial state. As a consequence, this
kind of protocol is not used in practice.

The second family of global checkpoint protocols gath-
ers the coordinated checkpoint protocols. Coordinated
checkpoint consists of taking a coherent snapshot of the
whole system at a given time. A snapshot is a collection
of checkpoint images (one per process) with each chan-
nel state (Chandy and Lamport 1985). A snapshot is said
to be coherent if for all messages m from process P to
process Q, if the checkpoint on Q has been made after
reception of m then the checkpoint on P has been made
after emission of m. When a failure occurs, all processes
are rolled back to their last checkpoint images.

The first algorithm to coordinate all the checkpoints is
presented in Chandy and Lamport (1985). This algorithm
supposes all channels are FIFO queues. Any process can
decide to start a checkpoint. When a process checkpoints,
it sends special messages called markers in its communi-
cation channels. When a process receives a marker for
the first time, it checkpoints. After beginning a checkpoint,

all messages received from a neighbor are added to the
checkpoint image, until the marker reception.

Other fault-tolerant MPI implementations use this algo-
rithm (Burns, Daoud, and Vaigl 1994; Stellner 1996;
Agbaria and Friedman 1999). For example, Cocheck (Stell-
ner 1996) is an independent application implemented on
top of the message passing system (tuMPI) which can be
easily adapted for different systems.

Starfish (Agbaria and Friedman 1999) modifies the
MPI API in order to allow users to integrate some check-
pointing policies. Users can choose between coordinated
and uncoordinated (for trivial parallel applications) check-
points strategies. For an uncoordinated checkpoint, the
environment sends to all surviving processes a notifica-
tion of the failure. The application may take decisions
and corrective operations to continue the execution (i.e.
adapts the data sets repartition and work distribution).

LAMMPI (Burns, Daoud, and Vaigl 1994) is one of
the widely used reference implementations of MPL. It has
been extended to support fault tolerance and application
migration with coordinated checkpoint using the Chandy-
Lamport algorithm (Chandy and Lamport 1985; Sanka-
ran et al. 2003). LAMMPI does not include any mechanism
for other kinds of fault-tolerant protocols. In particular it
does not provide straightforward mechanisms to imple-
ment message logging protocols. It uses high level MPI
global communications that are not comparable in per-
formance with other fault-tolerant implementations.

Clip (Chen, Lee, and Planck 1997) is a user level coor-
dinated checkpoint library dedicated to IntelParagon sys-
tems. This library can be linked to MPI codes to provide

semi-transparent checkpoint. The user adds checkpoint
calls in his code but does not need to manage the pro-
gram state on restart.

Checkpointing adds an overhead increasing the appli-
cation execution time. There is a tradeoff between the
checkpoint cost and the cost of restarts due to faults that
lead to the selection of the best checkpoint interval (Wong
and Franklin 1993; Plank and Elwasif 1998; Planck and
Thomason 2001). However, the delay between check-
points should be computed from the application execution
time without checkpoint and from the cluster mean time
between failure (MTBF). Thus, it should be tuned for
each configuration of application, platform performance
and number of processes.

The third family of global checkpoint protocols gathers
Communication Induced Checkpointing (CIC) protocols.
Such protocols try to take advantage of uncoordinated and
coordinated checkpoint techniques. Based on the uncoor-
dinated approach, it piggybacks causality dependencies in
all messages and detects risk of inconsistent state. When
such a risk is detected, some processes are forced to check-
point. While this approach is very appealing theoretically,
relaxing the necessity for global coordination, it turns out
to be inefficient in practice. Alvisi et al. (1999) present a
deep analysis of the benefits and drawbacks of this
approach. The two main drawbacks in the context of clus-
ter computing are 1) CIC protocols do not scale well (the
number of forced checkpoints increases linearly with the
number of processes) and 2) the storage requirement and
usage frequency are unpredictable and may lead to check-
point as frequently as coordinated checkpoint.

Level

Manetho

Cocheck

indepedent of MP| n faults

Starfish "\
enrichment of MPI |

API clip :
semi-transparent]

checkpoint |
@ 3

MPICH-CL
n faults
distributed servers

Framework

MPICH-Vcausal

n faults

Comm.
lib

distributed servers

FT-MPI

MPI/FT

Modification of MPI routines

redundance of tasks Fault-treatment to user decision

MPICH-V1

n faults

MPI-FT
n faults
centralized server

distributed servers

Coordinated checkpoint N .
: optimistic logging
(sender based)

message logging
causal logging

Method

'other method
pessimistic logging i

Fig. 1 Classification by techniques and level in the software stack of fault-tolerant message passing systems.

2.2 Message Logging

Message logging consists of forcing the reexecution of
crashed processes from their last checkpoint image to
reach the state immediately preceding the crashing state,
in order to recover a state coherent with non-crashed
ones. All message logging protocols suppose that the
execution is piecewise deterministic. This means that
the execution of a process in a distributed system is a
sequence of deterministic and nondeterministic events
and is led by its nondeterministic events. Most protocols
suppose that the reception events are the only possible
nondeterministic events in an execution. Thus message
logging protocols consists of logging all reception events
of a crashed process and replaying the same sequence of
receptions.

There are three classes of message logging protocols:
pessimistic, optimistic and causal message logging. Pessi-
mistic message logging protocols ensure that all events of
a process P are safely logged on reliable storage before P
can impact the system (send a message) at the cost of syn-
chronous operations. Optimistic protocols assume faults
will not occur between an event and its logging, avoiding
the need of synchronous operations. As a consequence,
when a fault occurs, some non-crashed processes may
have to rollback. Causal protocols try to combine the
advantages of both optimistic and pessimistic protocols:
low performance overhead during failure-free execution
and no rollback of any non-crashed process. This is
realized by piggybacking events to message until these
events are safely logged. A formal definition of the three
logging techniques may be found in Alvisi and Marzullo
(1995).

2.2.1 Optimistic message logging A theoretical pro-
tocol (Strom and Yemini 1985) presents the basic aspect
of optimistic recovery. It was first designed for clusters,
partitioned into a fixed number of recovery units (RUs),
each one considered as a computation node. Each RU has a
message logging vector storing all messages received form
the other RUs. Asynchronously, an RU saves its logging
vector to a reliable storage. It can also checkpoint its state.
When a failure occurs, it tries to replay input messages
stored in its reliable storage from its last checkpoint;
messages sent since last checkpoint are lost. If the RU fails
to recover a coherent state, other RUs concerned by lost
messages should be rolled back too, until the global sys-
tem reaches a coherent state.

Sender based message logging (Johnson and Zwaenep-
oel 1987) is an optimistic algorithm tolerating one failure.
Compared with Strom and Yemini (1985), this algorithm
consists of logging each message in the volatile memory
of the sender. Every communication requires three steps:
send; acknowledge + receipt count; acknowledge of the

acknowledge. When a failure occurs, the failed process
rolls back to its last checkpoint. Then it broadcasts requests
to retrieve initial execution messages and replays them in
the order of the receipt count.

Pruitt (1998) presents an asynchronous checkpoint and
rollback facility for distributed computations. It is an
implementation of the sender-based protocol proposed
by Juang and Venkatesan (1991). This implementation is
built from MPICH.

2.2.2 Pessimistic message logging MPI-FT Louca et al.
(2000) uses a special entity called Observer. This process
is presumed to be reliable. It checks the availability of all
MPI peers and respawns crashed ones. Messages can be
logged following two different approaches. The first one
logs messages locally to the sender in an optimistic mes-
sage logging way. In the case of a crash, the Observer con-
trols all processes asking them to re-send old messages.
The second approach logs all the messages on the Observer
in a pessimistic message logging way. Our pessimistic
protocol always relies on distributed components in order
to be scalable.

Another pessimistic protocol is presented in Strom,
Bacon, and Yemeni (1988). However, the study provides
no architecture principle, theoretical foundation, imple-
mentation detail, performance evaluation or merit com-
parison against non-fault-tolerant MPI and other fault-
tolerant MPI implementations.

In this paper, we present two novel pessimistic log-
ging protocols using some remote reliable components.

2.2.3 Causal message logging Manetho (Elnozahy and
Zwaenepoel 1992a, 1992b) presents the first implementa-
tion of a causal message logging protocol. Each process
maintains an antecedence graph which records the causal
relationship between nondeterministic events. When a
process sends a message to another, it does not send the
complete graph but an incremental piggybacking: all events
preceding one initially created by the receiver do not need
to be sent back to it.

Another algorithm has been proposed in Lee et al.
(1998) to reduce the amount of piggybacking on each
message. It partially reorders events from a log inherit-
ance relationship. Moreover it requires no additional
piggybacking information. This permits having some
information about the causality that a receiver may already
hold.

An estimation of the overhead introduced by causal
message protocols has been studied by simulation in
Bhatia, Marzullo, and Alvisi (1998).

We will propose and test a new causal protocol, which
relies on a stable component to reduce optimally the size
of the piggyback in all messages.

2.3 Other Fault Tolerant MPI

FT-MPI (Fagg and Dongarra 2000; Fagg, Bukovsky, and
Dongarra 2001) handles failures at the MPI communica-
tor level and lets the application manage the recovery.
Special instructions have then to be added to the MPI code
in order to exploit the error returned by MPI instructions
on failure detection. The main advantage of FT-MPI is its
performance since it does not checkpoint nor log mes-
sages, but its main drawback is the lack of transparency
for the programmer.

Egida (Rao, Alvisi, and Vin 1999) is a framework allow-
ing comparison between fault-tolerant protocols for MPI.
Rao, Alvisi, and Vin (1998) present a comparison between
pessimistic and causal message logging with this frame-
work. As expected, pessimistic are faster than causal tech-
niques for restarting because all events can be found on
stable storage, but have much more overhead during fail-
ure-free execution. We will demonstrate that this is still the
case with our novel pessimistic and causal protocols. We
will also compare coordinated checkpoint with message
logging techniques, an issue left unaddressed by Egida.

MPUI/FT (Batchu et al. 2001) considers task redundancy
to provide fault tolerance. It uses a central coordinator
that monitors the application progress, logs the messages,
manages control messages between redundant tasks and
restarts failed MPI process. A drawback of this approach
is the central coordinator which, according to the authors,
scale only up to 10 processors. Our new protocols use cen-
tralized architecture for mechanisms requiring infrequent
communications and decentralized architecture for mech-
anisms requiring high communication workload.

The research presented in this paper differs from previ-
ous work in many respects. We present and study original
pessimistic and causal protocols. We present an optimiza-
tion of the Chandy-Lamport algorithm never discussed in
the literature. We present the implementation of these pro-
tocols within a new framework, located at an original soft-
ware-stack level. We compare protocols that have never
been confronted: coordinated checkpoint and message log-
ging. Finally, we include in our comparison the fault toler-
ance merit, based on a new criteria: the performance
degradation according to fault frequency.

3 Protocols Implemented in MPICH-V

We have developed four different protocols, each protocol
has been proven correct on a theoretical basis. All proto-
cols have been implemented within the MPICH-V frame-
work that is briefly presented.

An example of execution including two MPI commu-
nications and one fault for each of these protocols is pre-
sented in Figures 3 to 6. First, we developed a pessimistic
message logging protocol called MPICH-V1 for Desktop

Grids. The key points of the proof of this protocol can be
found in Bosilca et al. (2002). The main goal of MPICH-
V2 (Bouteiller et al. 2003a), our second pessimistic proto-
col, was to reduce the number of required stable compo-
nents and enhance performance compared with MPICH-
V1. We designed this protocol for a cluster usage trying to
increase significantly the bandwidth of MPICH-V1. On
some applications, it appears that MPICH-V2 suffers from a
high latency. Our causal message logging protocol was an
attempt to decrease this latency at the cost of a higher
reexecution time. We implemented MPICH-V/CL (Bou-
teiller et al. 2003c) a coordinated checkpoint protocol, as a
reference for comparison with message logging approaches,
in terms of overall performance and fault tolerance. All
these protocols feature a different balance between latency,
bandwidth and reexecution cost in case of failure.

3.1 The MPICH-V Generic Framework

MPICH-V is based on the MPICH library (Gropp et al.
1996), which builds a full MPI library from a channel.
A channel implements the basic communication routines
for a specific hardware or for new communication proto-
cols. MPICH-V consists of a set of runtime components
and a channel (ch_v) for the MPICH library.

The different fault-tolerant protocols are implemented
at the same level of the software hierarchy, between an
MPI high level protocol management layer (managing glo-
bal operations, point to point protocols, etc.) and the low
level network transport layer. This is one of the most rel-
evant layers for implementing fault tolerance if criteria
such as design simplicity and portability are considered.
All fault-tolerant protocols also use the same checkpoint
service.

The checkpoint of the MPI application is performed
using the Condor Standalone Checkpoint Library (CSCL;
Litzkow et al. 1997). When a checkpoint is requested, the
MPI application forks. The original process continues to
compute, while the forked copy closes all communications
(with the daemon or the Channel Memories), performs
the checkpoint, and then exits. The checkpoint is sent to
the checkpoint server without intermediate copy in order
to pipeline checkpoint image creation and transmission.

The MPICH-V fault tolerance frameworks sit within the
channel interface, thus at the lowest level of the MPICH
software stack. Among the other benefits, this permits use
of the unmodified MPICH implementation of point to
point and global operations, as well as complex concepts
such as topologies and communication contexts. A poten-
tial drawback of this approach might be the necessity to
implement a specific driver of all types of Network Inter-
face (NIC). However, several NIC vendors are providing
low level, high performance (zero copy) generic socket
interfaces such as Socket GM for Myrinet, SCI Socket

Checkpoint |
S i

Checkpoint Server

BN

! Dispatcher

D¢
iCheckpoints

-
I Scheduler D

L

Server

Network

@

Computing nodes

)
Dispatcher i

}
A
¢e

(a) MPICH-V1

S

i

=

Communication daemon

S
and computing nodes@

(b) MPICH-V2 & MPICH-V/causal

Checkpoint Server

D\
i Dispatcher \
i ¢4>- Network
\\:\Q s RN
o®

Event Logger

/O

Network

l

Communication daemons, Q
and computing nodes|

(¢) MPICH-V/cl

Fig. 2 Typical deployment for our fault-tolerant protocol. White components are supposed to be stable.

for SCI and IPoIB for Infiniband. MPICH-V protocols
typically sit on top of these low level drivers.

Figure 2 compares typical deployments of the MPICH-
V frameworks. Many components such as the checkpoint
server, the dispatcher, and the checkpoint scheduler are
shared on these deployments. The scheduling of process
checkpoints has been added in the MPICH-V2 architec-
ture, and the components were extended to fit the needs of
new protocols over time. The checkpoint server and the
dispatcher have been slightly optimized since their first
version, but their functionalities and interfaces have not
evolved.

3.2 MPICH-V1: A Pessimistic Protocol for High
Volatility and Heterogeneous Resources

This first implementation of a pessimistic message log-
ging is based on the original concept of the Channel Mem-
ory (Bosilca et al. 2002). The Channel Memory (CM) is a
remote stable component intended to store the payload
and the order of reception of MPI messages of a particular
receiver. Each MPI process is associated with its own
CM. However, in the implementation, a single CM can
serve several computing nodes. Figure 3 presents an exe-
cution example of MPICH-V 1. When a process MPI, sends

MPI
cM o /“(’ /:n
A
M ‘ \ /
m m
MPI —

Fig. 3 Example of execution with MPICH-V1.

a message m to a process MPI, it sends it to the CM
(CMp) of the receiver. When a process MPI; wants to
receive a message, it requests it from its own CM (CMy)
which replies by sending the requested message m. Thus
when a process MPI, fails, it is restarted from a check-
point image and contacts its CM (CM,) to get the mes-
sages to reexecute.

The main drawbacks of this approach are 1) every mes-
sage is translated into two communications, which drasti-
cally impacts the latency and 2) the bandwidth of the nodes
hosting the channel memories is shared among several
computing nodes. This may lead to a bandwidth bottle-
neck at the Channel Memory level, and may require a large
number of CM (stable nodes). Nonetheless 1) reexecution
of a crashed process is faster than for every other protocol
we have developed, particularly when multiple faults occur
at the same time, and 2) considering a heterogeneous net-
work composed of slow connections to computing nodes
and fast connections to stable resources, the need for a
large number of channel memories to reach the non-fault-
tolerant MPI performance is decreased. This makes the
V1 protocol adapted for highly volatile systems with het-
erogeneous networks such as Desktop Grids. In addition,
the CM implements an implicit tunnel between computing
nodes and thus enables communications between nodes
protected by firewalls or behind NAT or proxies, which is
typically the case of Desktop Grid deployments.

3.2.1 Implementation notes on the MPICH-V frame-
work As in all the other fault-tolerant protocols pre-
sented here, the dispatcher of the MPICH-V environment
has two main purposes: 1) to launch the whole runtime
environment (encompassing the computing nodes and the
auxiliary “special” nodes) on the pool of machines used
for the execution, and 2) to monitor this execution, by

detecting any fault (node disconnection) and relaunching
the crashed nodes.

All protocols use the same checkpoint server. This
component is intended to store checkpoint images on a
reliable node. However, the checkpoint server can survive
intermittent faults. It is a high performance multi-process,
multiple connection, image holder. Images are marked by
a sequence number, and the checkpoint server replies to
requests to modify, add, delete or give back a particular
image. All checkpoint requests are transactions: in case of
a client failure, the overall transaction is canceled, with
no modification of the checkpoint server state.

MPICH-V1 does not use a checkpoint scheduler and
checkpoints are taken as a result of a local decision, inde-
pendently for each computing node.

The driver is the part of the fault-tolerant framework
linked with the MPI application. It implements the Channel
Interface of MPICH. Our implementation only provides
synchronous functions (bsend, breceive, probe, initialize
and finalize), as the asynchronism is relayed to another
component of the architecture.

The driver of MPICH-V1 is basically a client of the CM
servers. Connexion to all CM servers is performed during
the initialization function of the driver. It implements syn-
chronous send and receive operations through synchro-
nous TCP connexion to CM servers. The performance does
not suffer as a result of this synchronous implementation,
as the asynchronism is relayed to the CM server.

The CM stores all received message payloads and
delivery orders of a specific MPI process. Each computa-
tion process is connected to one Channel Memory for its
receptions. The implementation is slightly different: a
CM server is a process that can act as a single Channel
Memory for many computing nodes.

The CM is a multi-threaded application that handles a
set of TCP connections using a pool of threads. Threads
are queued following a round-robin strategy for entering a
select/communicate loop. Their overlapping is designed
to improve the CM availability for new requests.

No specific QoS policy is implemented, so all client
computing nodes of a CM share the bandwidth of the sta-
ble node hosting it.

3.3 MPICH-V2: A Pessimistic Protocol for
Large Clusters

In MPICH-V2, processes communicate directly. Figure 4
presents an example execution of this protocol. This pro-
tocol relies on a sender based approach: all payloads are
stored on the volatile memory of message senders (between
brackets on the figure). Only the message causality is
stored on a stable storage called Event Logger. © When a
process receives a message m, it sends to the event logger
information about the reception id(m). @ When a process

[m]
A(MP) f\l :
A(daemon) 0 *[112] H{ o m
\ m’ /H \id(m’/id(m’) /

EventLogger
N \m ®/id(m) ilck[m’]/ @ /m’
B(daemon) ﬂ ~m s
B(MPI) =
(] ® @

Fig. 4 Example of execution with MPICH-V2.

has to send a message m’, it first waits for acknowledg-
ment of causality information previously sent to the event
logger and stores the message payload in its own mem-
ory. The termination of these two operations triggers the
authorization to send the message m’. This leads to a high
latency for short messages. ® When a failure occurs, the
failed process is restarted from its last checkpoint and
retrieves from the Event Logger the ordered list of the
receptions it has to reexecute. ® Then it requests the ini-
tial sender of each message to send it again from its local
sender based payloads. Thus, the sender based message
payload must be included in checkpoint images to toler-
ate simultaneous faults. The reexecution of a crashed
process is slower than for MPICH-V1 since all message
payloads needed for the reexecution are requested from
several and possibly failed processes.

However, a deployment of MPICH-V2 requires many
fewer event loggers than channel memories for MPICH-
V1 because of the sender based approach and the reduced
amount of information logged on stable components. In a
typical deployment (Figure 2(b)), all stable components
except checkpoint servers can be launched in a single sta-
ble node without impact on performance (Bouteiller et al.
2003a). Moreover the direct communication between
daemons enhances raw communication performance com-
pared with MPICH-V 1.

3.3.1 Implementation notes on the MPICH-V frame-
work The event logger is a specific component for
message logging protocol used in MPICH-V2 and MPICH-
V/causal. Message logging protocols rely on nondeter-
ministic events, namely reception events (see Section 2.2).
Such an event can be registered as a determinant: a tuple
of a fixed number of pieces of basic information where
the most important are: which process has sent the mes-
sage; at which logical clock it was sent; and at which log-
ical clock it was received (Alvisi and Marzullo 1995).
Note that the determinant does not record the payload of
the message. Event loggers are used as remote stable data-
bases to collect for each process the sequence of reception
events it has made. When a daemon delivers a message to
its MPI process, it sends the determinant to the event log-

ger of this process, using a synchronous or asynchronous
acknowledge protocol. When a failure occurs the restarting
daemon asks the event logger for the sequence of events
it has to replay.

The checkpoint scheduler requests computation proc-
esses to checkpoint according to a given policy. The policy
is protocol dependent. However, the checkpoint scheduler
includes requesting information to computing nodes, which
is useful for implementing a smart policy for message log-
ging protocols. It also implements a global checkpoint
sequence number, usable in a coordinated checkpoint pol-
icy to ensure success of a global checkpoint.

In the MPICH-V2 protocol, the sender-based message
logging has a major impact on the amount of memory used
by a process, increasing the checkpoint image size of this
process. Nonetheless checkpointing a process allows the
processes that have sent messages to it to flush the corre-
sponding message payloads. A special process called
checkpoint scheduler has been added in this framework,
not to ensure the fault tolerance but to enhance its overall
performance.

The checkpoint scheduler can ask processes for infor-
mation about their amount of message payload and a best
effort checkpoint scheduling policy can be implemented
using this information. Other checkpoint scheduling poli-
cies such as random and round-robin selections may be
used.

3.4 MPICH-V/causal: A Causal Message
Logging Protocol

The main drawback of MPICH-V2 is the high latency
introduced by the necessity to wait for the event logger
acknowledgment of previous reception before sending a
message. Causal protocols address this problem by pig-
gybacking non-acknowledged causality to the application
messages. Nonetheless, if this piggybacking size increases
with the number of exchanged messages during the com-
putation, it can have a major impact on the bandwidth.
Thus designing and implementing a protocol reducing as
much as possible the overall piggyback size is the corner-
stone for limiting the protocol overhead.

Figure 5 presents an example execution of our causal
protocol. ® When a process receives a message, it stores
and asynchronously sends the resulting causality infor-
mation to the event logger and stores it in a list of causal-
ity information to piggyback (between braces in the figure).
@ The event logger acknowledges this information asyn-
chronously as fast as possible. If this acknowledge does
not come back before the application needs to send a new
message m’, then the causality informations list {id(m)}
is piggybacked to the message. ® There is only the need
to wait for completion of the local (sender based) logging
before the message can be sent. Moreover every daemon

{id(m)}
AMPI) [qu
A(daemon) [T‘Tlm] W m’ m/
/1d(m)+m id(m’)+m/ /

| im0\

l{lu} ® ® 6

EventLogger:

B(daemon) 0
B(MPI)

Fig. 5 Example of execution with MPICH-V/causal.

stores the last events, one per process, corresponding to
emissions or receptions to/from a neighbor B. When send-
ing to this neighbor B, and because there is a total order
between the events generated by a single node, no event
created by a same node and preceding the last event con-
cerning this node has to be piggybacked. Note that causal
information that a process has to piggyback in messages
have to be included in checkpoint image, in addition to
sender-based message payloads. @ When a failure occurs,
the failed process retrieves the causality information
from the event logger, and also from all other nodes. ® It
then requests all messages to reexecute from the other
nodes as in the pessimistic protocol of MPICH-V2.

Typical deployments of MPICH-V/causal use the same
components as MPICH-V2 (Figure 2(b)).

3.4.1 Implementation notes on the MPICH-V frame-
work MPICH-V/causal uses the same components as
MPICH-V2. The event logger is different because in causal
message logging protocols, in order to collect the unused
memories of the node from causal information propagated
through piggybacking, the nodes have to be informed
about the events stored on a reliable event logger.

Two strategies can be used. The first one is to broadcast
all acknowledge messages to all nodes. This is expected to
have dramatic impact on performance. We implemented the
second one: the event logger has been extended to send back
the last stored clock for all receivers during the acknowl-
edge protocol. This avoids broadcasting all acknowledge
messages and requires using only one event logger.

3.5 MPICH-V/CL: A Coordinated Checkpoint
Protocol

We also implemented a coordinated checkpoint protocol
based on the Chandy-Lamport algorithm (Chandy and
Lamport 1985). The main goal of this implementation was
to compare such an approach with message logging pro-
tocols. The coordination of all checkpoints is ensured by
the checkpoint scheduler and, in contrast to message log-
ging deployments, where multiple checkpoint schedulers

A(MPI)
A(daemon)

B(daemon)
B(MPI)

Tag -~
‘D @ @

Fig. 6 Example of execution with MPICH-V/CL.

could be used, here only one checkpoint scheduler must
be launched (Figure 2(c)).

The Chandy-Lamport algorithm relies on a wave of
synchronization propagated through communication chan-
nels. Figure 6 presents an example execution of this protocol.
@® When a process receives a checkpoint tag, it begins
its checkpoint, and stores any message m incoming from
another communication channel as an in-transit message
until the checkpoint tag is received. @ All these in-transit
messages are included in the checkpoint image. ® It also
sends a checkpoint tag to all neighbors to flush its own out-
put channels. The checkpoint of a node is finished when
all input channels have been flushed by a checkpoint tag.

Our protocol is an optimization of classical coordinated
checkpoint, intended to reduce the stress of the checkpoint
servers during the checkpoints and restarts. The optimiza-
tion consists of storing the checkpoint image not only on
a remote server, which is mandatory to ensure fault toler-
ance after a crash, but also on the local disks of computing
nodes. This local storage allows a restart from the local
checkpoint image for all non-failed processes, reducing
the stress of the checkpoint server to only the load related
to the restart of faulty processes. The evaluation section
will highlight the benefits of this optimization, in term of
tolerance to high fault frequency.

® When a failure occurs, all processes are restarted
from a checkpoint image belonging to the same coordinated
checkpoint phase. All non-failed processes load their
image from their local disk. Failed processes, restarted on
other nodes, download their checkpoint images from their
checkpoint servers. ® In-transit messages are delivered
from the checkpoint to the application.

3.5.1 Implementation notes on the MPICH-V frame-
work The Chandy-Lamport algorithm does not need the
use of an event logger, or channel memories. The deploy-
ment is thus slightly simpler.

MPICH-V/CL uses a checkpoint scheduler policy slightly
different from the one used for the uncoordinated check-
point protocols. The checkpoint scheduler maintains a
global checkpoint sequence number. When requested

by its policy (a periodic policy), it requests every process
to checkpoint with this sequence number, acting as a com-
puting node initiating a Chandy-Lamport coordinated
wave. When a process successfully finishes its checkpoint,
it sends the checkpoint tag to the checkpoint scheduler.
Thus, the checkpoint scheduler can ensure that a global
checkpoint is successful and notify every computing node
to remove older remote and local checkpoint files. When
a failure is detected, all nodes retrieve the global check-
point sequence number from the checkpoint scheduler,
and then restart from an image tagged by this number.

4 Performance Evaluation

We present a set of experiments to evaluate our frame-
works in comparison with reference implementation, meas-
ure framework related overheads and compare the four
protocols.

Other performance evaluations concerning the differ-
ent components (channel memory, checkpoint servers, etc.)
and impact of blocking and non-blocking checkpoint on
the execution time are presented in our previous papers
on MPICH-V (Bosilca et al. 2002; Bouteiller et al. 2003a,
2003c; Lemarinier et al. 2004).

4.1 Experimental Conditions

All measurements presented in this paper are performed
on an Ethernet network. Other measurements, not pre-
sented in this paper, have been made for Myrinet and SCI
networks (Lemarinier et al. 2004). Since MPICH-V 1 is not
adapted to these types of network, we restrict our com-
parison to an Ethernet network.

Experiments are run on a 32-node cluster. Each node is
equipped with an AthlonXP 2800+ processor, running at
2GHz, 1GB of main memory (DDR SDRAM), and a 70GB
IDE ATA100 hard drive and a 100Mbit/s Ethernet Net-
work Interface card. All nodes are connected by a single
Fast Ethernet Switch.

All these nodes were operating under Linux 2.4.20. The
tests and benchmarks were compiled with GCC (with flag
—03) and the PGI Fortran77 compilers. All tests were run
in dedicated mode. Each measurement was repeated 5 times
and we present a mean of them.

The first experiments are synthetic benchmarks ana-
lyzing the individual performance of the subcomponents.
We used the NetPIPE (Snell, Mikler, and Gustafson 1996)
utility to measure bandwidth and latency. This is a ping
pong test for several message sizes and small perturba-
tions around these sizes. The second set of experiments is
the set of kernels and applications of the NAS Parallel
Benchmark suite (NPB 2.3; Bailey et al. 1995), written by
the NASA NAS research center to test high performance
parallel machines.

For all the experiments, we considered a single check-
point server connected to the rest of the system by the
same network as the MPI traffic. While other architec-
tures have been studied for checkpoint servers (distrib-
uted file systems or parallel file systems), we consider
that this system impacts the performance of checkpoint-
ing similarly for any fault-tolerant protocol.

4.2 Fault-Tolerant Framework Performance
Validation

It is important to validate our fault-tolerant frameworks
and to understand which overheads are framework related
and which are protocol induced. In order to validate these
points, we compared the performance of the MPICH-V
framework without fault tolerance (MPICH-Vdummy) to
the reference non-fault-tolerant implementation MPICH-
P4. The architecture of the MPICH-V1 protocol, with sta-
ble channel memories, is intrinsically fault tolerant. In
other words, there is no way to remove fault tolerance
from MPICH-V1. Thus a comparison of the framework
of MPICH-V1 without fault tolerance does not have any
meaning. However, we compare the global overhead of
the MPICH-V1 architecture to the one of MPICH-P4,
since the framework overhead is closely related to the
protocol architecture.

4.3 Protocol Performances

4.3.1 Performances without faults Figures 7(a) and
7(b) compare the bandwidth and the latency of the Net-

PIPE (Snell, Mikler and Gustafson 1996) ping-pong bench-
mark for the different protocols.

On the Ethernet network, the non-fault-tolerant proto-
col of the MPICH-V Framework, Vdummy, adds only a
small overhead on bandwidth compared with P4. It adds
a 30% increase in latency, because of the implementation
of the communication between the channel interface and
the daemon. This implementation adds delays related to
context switch, and system calls before every actual emis-
sion of a message on the network. Since all our protocols
use the same mechanism, the 30% increase can be con-
sidered as the framework overhead. Note that we plan to
remove additional system calls and context switches
from the channel to the daemon IPC mechanism in order
to remove this overhead.

The latency experience (Figure 7(b)) was conducted
up to 8Mb messages, and shows asymptotic behaviors
for all protocols similar to the one at 32Kb: their laten-
cies increase linearly from 32Kb messages and keep
the same gaps. MPICH-V1 presents a high and constant
multiplicative factor compared with P4, for small as well
as for large messages. This is due to the communica-
tion scheme, which imposes every message to cross a
channel memory. Although for large messages all other
implementations perform evenly compared with P4, for
small messages, all implementations behave differently.
MPICH-V2 clearly demonstrates a higher latency for
small messages, because of the acknowledge algorithm
of the event logger. The diagram shows that the causal
implementation solves the latency problem raised by the
pessimistic one.

Ethernet 100Mbit Bandwidth comparison

between raw TCP, P4, Vdummy, Vcl and Vcausal

—-—- RAW TCP

—— MPICH-Vcausal

— = MPICH-Vdummy

— MPICH-P4

— MPICH-V1
MPICH-V2

+—> MPICH-Vcl

®
=]
T

[<2]
o
T

Bandwidth (Mbit/s)
N
T

Message size (Bytes)

(a) Bandwidth comparison

I e M
ST T o S R S R
N

between VCausal, Vdummy, V1 and V2

Ethernet 100Mbit Latencgl‘lcomparison

~— MPICH-VCausal
---+ MPICH-Vdummy
— MPICH-P4
— MPICH-V1

MPICH-V2
—— MPICH-Vcl

| | | | | | | | | | | | | |
R Y P s

Message size (bytes

{bq*

(b) Latency comparison

Fig. 7 (a) Latency and (b) bandwidth comparisons of MPICH-P4, MPICH-V1, MPICH-V2, MPICH-Vcl and MPICH-V/

causal.

CG, Class A CG, Class B

MG, Class A MG, Class B

$
©

O
o

S H i
N

it VR

1 2 4 8 16 1 2 4 8 16

1 2 4 8 16 32
processors
LU, Class B

1 2 4 8 16
processors
LU, Class A

£ L L
) %
o il

%
%2
[

4

NS

===t}

processors # processors
FT, Class A SP, Class A
QQ
Ng
(L@
<
&
&
© H
@“ HHEE
Q
1 2 4 8 16 32
processors # processors
BT, Class A BT, Class B
o>°°°
0900 ‘&BQ
N
< &
&
S
N \QQQ
Q Q
1 4 9 16 25 1 4 9
processors # processors

1 2 4 8 16 32

processors # processors

MPICH-P4
MPICH-V1
MPICH-V2
MPICH-Vdummy
MPICH-Vcl
MPICH-Vcausal

@ oo,

Fig. 8 Performance comparison of MPICH-P4, MPICH-V1, MPICH-V2, MPICH-Vcl and MPICH-V/causal for six of the

NAS parallel benchmarks.

The bandwidth measurement (Figure 7(a)) shows a
high communication cost for MPICH-V 1. Since all com-
munications have to pass through the channel memory,
which is a remote computer, messages pass twice more on
the network than for direct communication, thus dividing
the observed bandwidth by two. The reduction is less for
the other fault-tolerant protocols. MPICH-V/causal appends
to each message a piggyback of causal information, which
increases the global message size compared with the other
protocols, thus decreasing slightly the observed band-
width. The two other protocols do not introduce new per-
formance reduction other than the reduction resulting from
the MPICH-V framework implementation.

We compared the performance of the four fault toler-
ant protocols on the set of kernels and applications of the
NAS parallel benchmark without checkpointing (Figure 8).
The first protocol, MPICH-V1 was run completely on the
CG and BT benchmarks. In order to provide fair compar-
ison between the protocols, the experiment was run using
one channel memory per set of four computing nodes. On
other benchmarks, such a deployment produced a memory
exhaustion of MPICH-V1, which clearly demonstrates a
limitation of this protocol. The LU benchmark provides
a high number of small communications. As expected,
MPICH-V2, which has the highest latency, presents a
high performance degradation compared with the two

other protocols (Causal and CL). All the NAS benchmarks
demonstrate that MPICH-VCL and MPICH-V/causal
reach performances similar to the ones obtained by the
Vdummy protocol which provides no fault tolerance. On
LU class B, the P4 reference implementation outperforms
MPICH-V on 32 nodes, which results from our imple-
mentation of the channel interface in MPICH-V, while on
BT class B, MPICH-V outperforms P4 because of the full
duplex communication implemented in every protocol of
MPICH-V. For BT, P4 uses only half duplex communi-
cations.

4.3.2 Performances with faults We evaluated the
fault resilience of all protocols. Figure 9 presents a com-
parison of the overhead induced by an increasing fault
frequency on the NAS benchmark BT between V1, V2,
Vcausal and Vcl implementations.

Figure 9 shows the slowdown of execution time, in per-
cent of BT class B running on 25 nodes, according to the
fault frequency, and compared with the execution time of
MPICH-VCL in a fault free context (label O in the x axis
of the figure). We consider five fault-tolerant protocols:
MPICH-V/causal, MPICH-V2, and two versions of MPICH-
VCL: one where driver and daemon may keep a copy of
checkpoint images on local disk, the other one where all
checkpoint images are only kept on a remote checkpoint
server. We ran the benchmark several times and introduced
an increasing number of non-overlapping faults during
the execution.

This figure clearly demonstrates the improvement of
local copies of the checkpoint image for the classical

=
Q
:5_; 600 \ : \
| [*MPICH-VCausal]
(9 MPICH-V2 |
3 500~ |- MPICH-VGL (only remote checkpointing) <> n
= | |©—© MPICH-VCL (checkpoint also on disk) / |
= A4 MPICH-V1
3 400 i -
S
o |]
£ o
5 300~ i
XL |
c ¥
= 200 -
c
s 4]
_8 b

! ! ! !
g 10 1/6 B 112 23
%) Number of faults per minute (fault frequency)

Fig. 9 Fault frequency impact on execution time of BT
class B 25 nodes on Fast-Ethernet using five fault tol-
erance protocols.

Chandy-Lamport algorithm. When all processors are
restarted, only the faulty one has to retrieve its check-
point image from a remote checkpoint server. When only
remote checkpointing is used, the checkpoint server
becomes the bottleneck.

The two message-logging protocols show very similar
behavior with respect to fault frequency. Despite the higher
complexity for restarting failed processes, the causal pro-
tocol exhibits slightly better performances because of its
higher performance between the faults.

For the remote message logging protocol, the fault-free
execution shows a high overhead. As we used one channel
memory for three computing nodes, the bandwidth of these
channel memory are shared between client nodes. Note
that this execution uses 30% supplementary nodes, assumed
to be stable. However, the high fault resilience of the
MPICH-V1 architecture is confirmed as it performs bet-
ter than all other protocols for very high fault frequen-
cies.

All protocols present different disruptive points from
where the execution does not progress any further. The fig-
ure demonstrates that this disruptive point is reached by
coordinated checkpoint protocols for lower fault frequen-
cies than for message-logging protocols. This is due to
the coordination of checkpoints, leading to simultaneous
storage of all checkpoint images on the remote checkpoint
server. If n is the number of processes to checkpoint, the
total time for building a coherent cut in the system is n
times higher than the time to save a single checkpoint
image. When the delay between faults is lower than this
time, the coordinated checkpoint protocol cannot progress
anymore. Pessimistic message-logging protocols need only
one successful checkpoint between two faults to ensure
execution progression.

The crosspoint between coordinated checkpoint and
message logging for our test is at one fault every three
minutes. However, if we consider more realistic datasets,
e.g. 1 GB memory occupation by all processes, then the
checkpoint time would be around 48 minutes (according
to a linear extrapolation of checkpoint time) for 25 nodes.
In that case the minimum fault interval ensuring that the
application still progresses is about one hour including all
the protocol and restart overheads. Following the same
extrapolation, if we consider a deployment with one check-
point server per 250 nodes, which is likely to occur in very
large platforms with ten thousand nodes or more, this
crosspoint will become one fault every ten hours. This last
value is typical MTBF for such very large platforms.

5 Conclusion and Future Work

In this article, we have presented several contributions:
we have first introduced an extensive related work section
presenting all previous research in the domain of message

passing distributed systems and especially in the context
of a MPI environment. As a result of the lack of results
comparing the two main classes of fault-tolerant protocols
(global coordination and message logging), we have
designed and implemented a generic framework for fault-
tolerant protocols comparison. Using this framework, we
have implemented three original and one optimization of
a classical protocol. We have compared the merits of these
different protocols in terms of performances on the NAS
parallel benchmark and in terms of fault tolerance.

The main results of this work can be summarized as
follows:

1. Direct communication between the computing nodes
is mandatory for high performance on the NAS
benchmark. This limits the use of pessimistic remote
message logging protocol (MPICH-V1) to desk-
top grids where channel memories can be used as
communication channels between computing nodes.

2. Remote synchronous pessimistic storage of causality
information in message logging protocols (MPICH-
V2) adds a latency overhead reducing significantly
the performances for the latency sensitive NAS
benchmarks.

3. Remote asynchronous pessimistic storage of cau-
sality information in message logging protocols
(MPICH-V/causal) solves the latency problem, but
reduces the observable bandwidth because of the
piggyback of causality information in all exchanged
messages.

4. Contrary to general belief, coordinated checkpoint
provides very good performance compared with
message logging in fault-free executions but also in
the presence of faults. The synchronization time is
not the primary limiting factor of this kind of pro-
tocol. The main performance degradation results
from the stress of the checkpoint server during
checkpoints and restarts. The stress from restarts
can be solved by using local copies of checkpoint
images.

5. The stress of the checkpoint server in coordinated
checkpoints is the main differentiating factor com-
pared with message-logging protocols which provide
better fault tolerance for high fault frequencies.

Several issues remain unexplored by this work. On the
one hand they correspond to potential usages of the
developed protocols and on the other hand they consist of
their improvement.

We are currently working on using the presented pro-
tocols to provide a novel approach for time sharing the
cluster resources between several MPI executions. In the
same research we are studying the performance of MPI
execution migration between clusters using heterogene-

ous networks and the impact of migration on the execu-
tion time.

In order to improve the proposed protocols, we will
compare their scalability on larger clusters. We will also
develop zero copy implementations of these protocols for
high bandwidth and low latency networks and study their
respective impact on performance. With these two ele-
ments we will be able to investigate the performance cross-
point of these protocols on high speed networks according
to the fault frequency, on large scale clusters.

Another research direction has been presented in
Bouteiller et al. (2003b): hierarchical fault tolerance in the
context of Grid. We have designed and started the imple-
mentation of MPICH-V3 based on the components described
in this paper and an original fault-tolerant protocol com-
posed of an augmented version of MPICH-V/CL and one
of the message logging protocols. The selection of the
best message logging protocol for this purpose is an issue
that will be addressed by this research.

Author Biographies

Aurélien Bouteiller is a PhD student in the Cluster and
Grid group of the LRI laboratory at Paris-South Univer-
sity and is a member of the Grand-Large team of INRIA.
He has obtained a Master in parallel computer science in
2002 from the french Paris-South university. He contrib-
utes to the MPICH-V project, a fault-tolerant MPI imple-
mentation comparing different fault-tolerant protocols.
His research interests include high performance fault-tol-
erant MPI and checkpoint optimizations and performance
evaluation.

Franck Cappello holds a Research Director position at
INRIA, after having spent 8 years as CNRS researcher.
He leads the Grand-Large project at INRIA and the Clus-
ter and Grid group at LRI. He has authored more than 50
papers in the domains of High Performance Programming,
Desktop Grids and fault-tolerant MPI. He is editorial board
member of the “International Journal on GRID Computing”
and steering committee member of IEEE/ACM CCGRID.
He organises annually the Global and Peer-to-Peer Com-
puting workshop. He has initiated and heads the Xtrem-
Web (Desktop Grid) and MPICH-V (Fault tolerant MPI)
projects. He is currently involved in two new projects:
Grid eXplorer (a Grid Emulator) and Grid5000 (a Nation
Wide Experimental Grid Testbed).

Thomas Herault is Associate Professor at the Paris South
University. He defended his PhD on the mending of tran-
sient failure in self-stabilizing systems under the supervi-
sion of Joffroy Beauquier. He is a member of the Grand-
Large INRIA team and works on fault-tolerant protocols
in large scale distributed systems. He contributes to the

MPICH-V project, and to the APMC project on automatic
and approximate probabilistic model checking of proba-
bilistic distributed systems.

Géraud Krawezik has studied as a PhD student in the
Cluster and Grid group at the University of Paris South, in
Orsay, under the guidance of Franck Cappello. He is inter-
ested in High Performance Computing standards (MPI,
OpenMP), and MPI volatile implementations (MPICH-V).
He also worked with Professor Marc Snir on new parallel
languages paradigms. He graduated in 2000 as an engi-
neer in computer science and electronical design from the
French School “ENSIETA”.

Pierre Lemarinier has obtained a Master in computer
science in 2002 from the french Paris-South University.
He is a PhD student in the parallelism team and the Grand-
Large team of the LRI laboratory of Paris-South. His
research interests include fault-tolerant protocols concep-
tion and validation and MPI implementations (MPICH-V).

References

Agbaria, A. and Friedman, R. 1999. Starfish: Fault-tolerant
dynamic MPI programs on clusters of workstations. 8th
International Symposium on High Performance Distrib-
uted Computing (HPDC-8 ’99). Los Alamitos, CA: IEEE
CS Press.

Alvisi, L., Elnozahy, E., Rao, S., Husain, S. A., and Mel, A. D.
1999. An analysis of communication induced checkpointing.
29th Symposium on Fault-Tolerant Computing (FTCS’99).
Los Alamitos, CA: IEEE CS Press.

Alvisi, L. and Marzullo, K. 1995. Message logging: Pessimistic,
optimistic, and causal. Proceedings of the 15th Interna-
tional Conference on Distributed Computing Systems
(ICDCS 1995), pp. 229-236. Los Alamitos, CA: IEEE CS
Press.

Bailey, D., Harris, T., Saphir, W., Wijngaart, R. V. D., Woo,
A., and Yarrow, M. 1995. The NAS Parallel Benchmarks
2.0. Report NAS-95-020, Numerical Aerodynamic Simu-
lation Facility, NASA Ames Research Center.

Batchu, R., Neelamegam, J., Cui, Z., Beddhua, M., Skjellum,
A., Dandass, Y., and Apte, M. 2001. MPI/FT™: Architec-
ture and taxonomies for fault-tolerant, message-passing
middleware for performance-portable parallel computing.
Proceedings of the 1st International Symposium of Cluster
Computing and the Grid (CCGRID2001), Melbourne,
Australia. IEEE/ACM.

Bhatia, K., Marzullo, K., and Alvisi, L. 1998. The relative over-
head of piggybacking in causal message logging proto-
cols. 17th Symposium on Reliable Distributed Systems
(SRDS’98), pp. 348-353. Los Alamitos, CA: IEEE CS
Press.

Bosilca, G., Bouteiller, A., Cappello, F., Djilali, S., Fédak, G.,
Germain, C., Hérault, T., Lemarinier, P., Lodygensky, O.,
Magniette, F., Néri, V., and Selikhov, A. 2002. MPICH-
V: Toward a scalable fault tolerant MPI for volatile nodes.

High Performance Networking and Computing (SC2002),
Baltimore USA, IEEE/ACM.

Bouteiller, A., Cappello, F., Hérault, T., Krawezik, G.,
Lemarinier, P., and Magniette, F. 2003a. MPICH-V2: a
fault tolerant MPI for volatile nodes based on pessimistic
sender based message logging. High Performance Network-
ing and Computing (SC2003), Phoenix USA, IEEE/ACM.

Bouteiller, A., Lemarinier, P., and Cappello, F. 2003b. MPICH-
V3 preview: A hierarchical fault tolerant MPI for multi-
cluster grids. IEEE/ACM High Performance Networking and
Computing (SC 2003), poster session, Phoenix USA.

Bouteiller, A., Lemarinier, P., Krawezik, G., and Cappello, F.
2003c. Coordinated checkpoint versus message log for
fault tolerant MPIL. IEEE International Conference on Clus-
ter Computing (Cluster 2003). Los Alamitos, CA: IEEE CS
Press.

Burns, G., Daoud, R., and Vaigl, J. 1994. LAM: An Open Clus-
ter Environment for MPL. Proceedings of Supercomputing
Symposium, pp. 379-386.

Chandy, K. M. and Lamport, L. 1985. Distributed snapshots:
Determining global states of distributed systems. Trans-
actions on Computer Systems 3(1):63-75. ACM.

Chen, Y., Li, K., and Planck, J. S. 1997. CLIP: A checkpointing
tool for message-passing parallel programs. High Per-
formance Networking and Computing (SC97). IEEE/ACM.

Elnozahy, E. N. and Zwaenepoel, W. 1992a. Replicated distrib-
uted processes in Manetho. 22nd International Sympo-
sium on Fault Tolerant Computing (FTCS-22), Boston,
MA. Los Alamitos, CA: IEEE CS Press.

Elnozahy, E. N. and Zwaenepoel, W. 1992b. Manetho: Trans-
parent rollback-recovery with low overhead, limited roll-
back and fast output. IEEE Transactions on Computers
41(5).

Elnozahy, M., Alvisi, L., Wang, Y. M., and Johnson, D. B.
2002. A survey of rollback-recovery protocols in mes-
sage-passing systems. ACM Computing Surveys (CSUR)
34(3):375-408.

Fagg, G. and Dongarra, J. 2000. FT-MPI: Fault tolerant mpi,
supporting dynamic applications in a dynamic world. 7th
Euro PVM/MPI User’s Group Meeting 2000, vol. 1908,
Balatonfiired, Hungary. Heidelberg: Springer-Verlag.

Fagg, G. E., Bukovsky, A., and Dongarra, J. J. 2001. HARNESS
and fault tolerant MPL. Parallel Computing 27(11): 1479—
1495.

Gropp, W. and Lusk, E. 2004. Fault tolerance in MPI programs.
Special issue of the Journal High Performance Comput-
ing Applications (IJHPCA) 18(3): 363-372.

Gropp, W., Lusk, E., Doss, N., and Skjellum, A. 1996. High-
performance, portable implementation of the MPI mes-
sage passing interface standard. Parallel Computing
22(6):789-828.

Johnson, D. B. and Zwaenepoel, W. 1987. Sender-based mes-
sage logging. The 17th Annual International Symposium
on Fault-tolerant Computing (FTCS’87). Los Alamitos,
CA: IEEE CS Press.

Juang, T. T.-Y. and Venkatesan, S. 1991. Crash recovery with
little overhead. 11th International Conference on Distrib-
uted Computing Systems (ICDCS’11), pp. 454-461. Los
Alamitos, CA: IEEE CS Press.

Lee, B., Park, T., Yeom, H. Y., and Cho, Y. 1998. An efficient
algorithm for causal message logging. 17th Symposium on
Reliable Distributed Systems (SRDS 1998), pp. 19-25. Los
Alamitos, CA: IEEE CS Press.

Lemarinier, P., Bouteiller, A., Herault, T., Krawezik, G., and
Cappello, F. 2004. Improved message logging versus
improved coordinated checkpointing for fault tolerant MPI.
IEEE International Conference on Cluster Computing
(Cluster 2004). Los Alamitos, CA: IEEE CS Press.

Litzkow, M., Tannenbaum, T., Basney, J., and Livny, M. 1997.
Checkpoint and migration of UNIX processes in the condor
distributed processing system. Technical Report Techni-
cal Report 1346, University of Wisconsin-Madison.

Louca, S., Neophytou, N., Lachanas, A., and Evripidou, P.
2000. MPI-FT: Portable fault tolerance scheme for MPI.
Parallel Processing Letters(PPL) 10(4). World Scientific
Publishing Company.

Planck, J. S. and Thomason, M. G. 2001. Processor allocation and
checkpoint interval selection in cluster computing sys-
tems. Journal of Parallel and Distributed Computing
61(11): 1570-1590.

Plank, J. S. and Elwasif, W. R. 1998. Experimental assessment
of workstation failures and their impact on checkpointing
systems. 28th Symposium on Fault-Tolerant Computing
(FTCS’98), pp. 48-57. Los Alamitos, CA: IEEE CS Press.

Pruitt, P. N. 1998. An Asynchronous Checkpoint and Rollback
Facility for Distributed Computations. PhD thesis, Col-
lege of William and Mary in Virginia.

Rao, S., Alvisi, L., and Vin, H. M. 1998. The cost of recovery
in message logging protocols. 17th Symposium on Relia-
ble Distributed Systems (SRDS), pp. 10-18. Los Alamitos,
CA: IEEE CS Press.

Rao, S., Alvisi, L., and Vin, H. M. 1999. Egida: An extensible
toolkit for low-overhead fault-tolerance. In 29th Sympo-
sium on Fault-Tolerant Computing (FTCS’99), pp. 48-55.
Los Alamitos, CA: IEEE CS Press.

Sankaran, S., Squyres, J. M., Barrett, B., Lumsdaine, A., Duell,
J., Hargrove, P., and Roman, E. 2003. The LAM/MPI check-
point/restart framework: System-initiated checkpointing.
Proceedings, LACSI Symposium, Sante Fe, New Mexico,
USA.

Snell, Q., Mikler, A., and Gustafson, J. 1996. Netpipe: A network
protocol independent performance evaluator. IASTED
International Conference on Intelligent Information Man-
agement and Systems.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Don-
garra, J. 1996. MPI: The Complete Reference. Cambridge,
MA: MIT Press.

Stellner, G. 1996. CoCheck: Checkpointing and process migra-
tion for MPI. Proceedings of the 10th International Paral-
lel Processing Symposium (IPPS ‘96), Honolulu, Hawaii.
Los Alamitos, CA: IEEE CS Press.

Strom, R. and Yemini, S. 1985. Optimistic recovery in distributed
systems. Transactions on Computer Systems 3(3):204—
226. ACM.

Strom, R. E., Bacon, D. F., and Yemini, S. A. 1988. Volatile log-
ging in n-fault-tolerant distributed systems. /8th Annual
International Symposium on Fault-Tolerant Computing
(FTCS-18), pp. 44—49. Los Alamitos, CA: IEEE CS Press.

Wong, K. F. and Franklin, M. A. 1993. Distributed computing
systems and checkpointing. 2nd International Symposium
on High Performance Distributed Computing (HPDC’93),
pp. 224-233. Los Alamitos, CA: IEEE CS Press.

